The use of biomarkers in the diagnosis of lung cancer


Mona Mlika
Faouzi Mezni


Using a simple 10 to 20 milliliters of blood sample in order to make the diagnosis of lung cancer is the dream of every patient and practitioner. In fact, even if tissue samples or bronchial liquid represent the gold standard for microscopic diagnosis, using less invasive procedures represented the aim of many researches published in the literature. The utility of biomarkers has been widely reported in screening context, mainly in association to low dose CT-scan, or in therapeutic context in order to highlight therapeutic targets or to change treatment in a context of resistance to target therapies. The use of biomarkers in a diagnostic context has been recently highlighted in the literature. The authors aimed to present a general review of different biomarkers that could be used in the diagnosis of lung cancer.


lung cancer, biomarker, diagnosis



  1. Hofman P, Popper HH. Pathologists and liquid biopsies: to be or not to be? Virchows Archiv 2016;469:601–9.
  2. Wadowska K, Bil-Lula I, Trembecki Ł, Śliwińska-Mossoń M. Genetic markers in lung cancer diagnosis: A review. Int J Mol Sci 2020;21:1–24.
  3. Pérol M, Arpin D, Soria JC. Biomarqueurs du cancer bronchique non à petites cellules : du concept à la pratique clinique – Biomarkers for non-small-cell lung cancer: from concept to molecular analysis-based treatment strategies. 2008.
  4. Seijo LM, Peled N, Ajona D, Boeri M, Field JK, Sozzi G, et al. Biomarkers in Lung Cancer Screening: Achievements, Promises, and Challenges. Journal of Thoracic Oncology 2019;14:343–57.
  5. Ostrin EJ, Sidransky D, Spira A, Hanash SM. Biomarkers for Lung Cancer Screening and Detection. Cancer Epidemiology Biomarkers and Prevention 2020;29:2411–5.
  6. Maly V, Maly O, Kolostova K, Bobek V. Circulating tumor cells in diagnosis and treatment of lung cancer. In Vivo (Brooklyn) 2019;33:1027–37.
  7. Hofman V, Heeke S, Marquette CH, Ilié M, Hofman P. Circulating tumor cell detection in lung cancer: But to what end? Cancers (Basel) 2019;11.
  8. Heeke S, Mograbi B, Alix-Panabières C, Hofman P. Never travel alone: The crosstalk of circulating tumor cells and the blood microenvironment. Cells 2019;8.
  9. Marquette CH, BOUTROS J, Benzaquen J, FERREIRA M, PASTRE J, Pison C, et al. Circulating tumour cells as a potential biomarker for lung cancer screening: a prospective cohort study. Lancet Respir Med 2020;8:709–16.
  10. Devriese LA, Bosma AJ, van de Heuvel MM, Heemsbergen W, Voest EE, Schellens JHM. Circulating tumor cell detection in advanced non-small cell lung cancer patients by multi-marker QPCR analysis. Lung Cancer 2012;75:242–7.
  11. Hofman P, Heeke S, Alix-Panabières C, Pantel K. Liquid biopsy in the era of immuno-oncology: Is it ready for prime-time use for cancer patients? Annals of Oncology 2019;30:1448–59.
  12. Wu J, Shen Z. Exosomal miRNAs as biomarkers for diagnostic and prognosticin lung cancer. Cancer Med 2020;9:6909–22.
  13. Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis. Int J Mol Sci 2021;22.
  14. Benzaquen J, Boutros J, Marquette C, Delingette H, Hofman P. Lung cancer screening, towards a multidimensional approach: Why and how? Cancers (Basel) 2019;11.
  15. Hofman P. Liquid biopsy for early detection of lung cancer. Curr Opin Oncol 2017;29:73–8.
  16. Ooki A, Maleki Z, Tsay JCJ, Goparaju C, Brait M, Turaga N, et al. A panel of novel detection and prognostic methylated DNA markers in primary non–small cell lung cancer and serum DNA. Clinical Cancer Research 2017;23:7141–52.
  17. Wielscher M, Vierlinger K, Kegler U, Ziesche R, Gsur A, Weinhäusel A. Diagnostic Performance of Plasma DNA Methylation Profiles in Lung Cancer, Pulmonary Fibrosis and COPD. EBioMedicine 2015;2:929–36.
  18. Yang Q, Chen L, Yang L, Huang Y. Diagnostic and prognostic values of circular RNAs for lung cancer: A meta-analysis. Postgrad Med J 2021;97:286–93.
  19. Zhou J, Cheng T, Li X, Hu J, Li E, Ding M, et al. Epigenetic imprinting alterations as effective diagnostic biomarkers for early-stage lung cancer and small pulmonary nodules. Clin Epigenetics 2021;13.
  20. Li J-H, Sun S-S, Li N, Lv P, Xie S-Y, Wang P-Y. MiR-205 as a promising biomarker in the diagnosis and prognosis of lung cancer. 2017.
  21. Zheng W, Zhao JJ, Tao Y, Guo M, Ya Z, Chen C, et al. MicroRNA-21: A promising biomarker for the prognosis and diagnosis of non-small cell lung cancer. Oncol Lett 2018;16:2777–82.
  22. Silvestri GA, Vachani A, Whitney D, Elashoff M, Porta Smith K, Ferguson JS, et al. A Bronchial Genomic Classifier for the Diagnostic Evaluation of Lung Cancer. New England Journal of Medicine 2015;373:243–51.
  23. Wu J, Shen Z. Exosomal miRNAs as biomarkers for diagnostic and prognosticin lung cancer. Cancer Med 2020;9:6909–22.
  24. Kim JE, Eom JS, Kim W young, Jo EJ, Mok J, Lee K, et al. Diagnostic value of microRNAs derived from exosomes in bronchoalveolar lavage fluid of early-stage lung adenocarcinoma: A pilot study. Thorac Cancer 2018;9:911–5.
  25. Boyle P, Chapman CJ, Holdenrieder S, Murray A, Robertson C, Wood WC, et al. Clinical validation of an autoantibody test for lung cancer. Annals of Oncology 2011;22:383–9.
  26. Wheelock CE, Rappaport SM. The role of gene–environment interactions in lung disease: The urgent need for the exposome. European Respiratory Journal 2020;55:1–6.
  27. Silvestri GA, Tanner NT, Kearney P, Vachani A, Massion PP, Porter A, et al. Assessment of Plasma Proteomics Biomarker’s Ability to Distinguish Benign From Malignant Lung Nodules: Results of the PANOPTIC (Pulmonary Nodule Plasma Proteomic Classifier) Trial. Chest 2018;154:491–500.
  28. Haince JF, Joubert P, Bach H, Ahmed Bux R, Tappia PS, Ramjiawan B. Metabolomic Fingerprinting for the Detection of Early-Stage Lung Cancer: From the Genome to the Metabolome. Int J Mol Sci 2022;23.
  29. Madama D, Martins R, Pires AS, Botelho MF, Alves MG, Abrantes AM, et al. Metabolomic profiling in lung cancer: A systematic review. Metabolites 2021;11.
  30. Maly V, Maly O, Kolostova K, Bobek V. Circulating tumor cells in diagnosis and treatment of lung cancer. In Vivo (Brooklyn) 2019;33:1027–37.
  31. Mlika M, Zorgati M, Mezni F el. Classifying multiple lung cancers using morphological features: a meta-analysis. J Immunoassay Immunochem 2020;41:817–32.